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P360: Physical Optics
Supplementary Note # 1:   Principle of Least Time
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Figure 1 -  A mirage: a road on a hot day appears to be wet in the distance.
This phenomenon can be understood from Fermat’s Principle of Least Time.

Pierre de Fermat Richard P. Feynman

Geometric Optics and Fermat’s Principle

A nice way to approach the subject of geometric
optics is by applying Fermat’s Principle of Least
Time (FPLT).  There is a nice discussion of this by
Feynman in his Lectures on Physics1.  In a later
book 2,  in which Feynman lays out the principles of
quantum electrodynamics in a series of lectures for
non-experts, he shows why FPLT works.

The statement of the principle is pretty simple:
when light travels from point A to point B it will

follow the path which takes the least time.  Combined with the possibility that the index of refraction
of the medium through which the light travels may be varying, FPLT explains a number of phenom-
ena.  Let’s take two examples.

Suppose you are looking out over a long highway on nice hot and sunny day.  In the distance the
road appears to be ‘wet.’ This mirage can be explained by FPLT.  The light from the sky above can
reach your eye by a straight line but if the road is hot the index of refraction of the air close to
surface is less than the index of refraction in the air above so the path followed by the light rays
actually is bent, as shown in Figure 1.  Where the index of refraction, n, is lower, the velocity of light

in the air, c/n, is greater.  The transit time along the curved path is less than for the straight line path.
Your brain interprets this phenomenon as light entering your eye coming from the reflection of light
from sky off a wet surface in the distance.

Another phenomenon is associated with the setting sun.  When see the sun as it is just about to
disappear over the horizon, it already is below the horizon.  You see the sun since the light obviously
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Figure 2 - Light travels from point A to point b by bouncing off a mirror.
FPLT tells us that the angles of incidence and reflection are equal.
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does not follow a straight line path to your eyes, rather the light comes along a path which minimizes
travel time, spending time up high where the index of refraction is near one, before reaching your
eyes.  You interpret this as light coming from a sun which is still above the horizon.

We will now use FPLT to derive the law of reflection and Snell’s Law - two cornerstones of the
geometric optics.  We will also use the principle to understand focusing properties of mirrors and
lenses.

Law of Reflection

Figure 2 two shows point A as a source of light and point B as the receiver.  Assuming that the index
of refraction is everywhere the same, the minimum time path will be a straight line between A and B,
but if we require that the light first reflect off the mirror as shown in the figure, what path will the
light take?  One possibility is for the light to travel straight down from point A to the mirror  and
then travel in a straight line to point B (path 1).  Yet another possibility is for the light to head to  a
point  on the mirror just below point B and then straight up to point B (path 2).  The travel time for
paths in which the light bounces off the mirror to the left of A or to the right of B would of course be
longer. Is there a point on the mirror between points a and b which at which the light bounces for
which the travel time is a minimum?  Yes there is and to find it consider Figure 2.  The time it takes
for light to travel from point A to the mirror to point B is just:
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Figure 3 - Light travel time, t(x), as a funtion of x for the case
shown in Figure 2 with a = b = 1 and L = 2.
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Setting dt/dx = 0 results in:

x

a2 + x2
=

(L − x)

b2 + L − x( )2

which is equivalent to requiring cosθ1 = cosθ2  or θ1 = θ2  - the angles of incidence and reflection are
equal.  If we plot the time as a function of x, for the case that a = b = 1 and L = 2 we get the curve of
Figure 3.  Not surprising, the minimum occurs when x = L/2 which corresponds to the incident and
reflected angles being equal.  In Chapter 26 or reference 1, Feynman gives a neat geometric proof of
this result.

Snell’s Law

Now consider the situation shown in Figure 4 where light leaves point A and arrives at point B.  The
difference now is that point A is in a medium with index of refraction equal to one and point B is in a
medium with index of refraction n.  As before we find the travel time:

t x( ) =
1

c
a2 + x2 + n ⋅ b2 + L − x( )2( )
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Imposing the requirement dt/dx = 0 gives us:

x

a2 + x2
= n

(L − x)

b2 + L − x( )2

or

cosθ1 = n ⋅ cosθ2

and since cosθ1 = sinθi  and cosθ2 = sinθr  we arrive at Snell’s Law:

sinθ1 = n ⋅ sinθ2

Clearly the strategy to minimize travel time is to stay in the medium with the lower index of refrac-
tion as long as possible before plunging into the medium with the higher n.  A straight line shot from
point A to point B will not work.  Those photons are smart.

Figure 4 - Light travels from point A to point B, passing from a medium to
another with different indices of refraction.  FPLT leads to Snell’s Law.º
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Focusing Light with Mirrors

A lot of what we will be doing in geometric optics is focusing light.  We will be taking rays of light
from a source and focusing those rays - bringing them together - somewhere else and we’ll exploit
reflection and refraction to do this.

Before we move on it is useful to point out that we can have reflection when light is incident on a
mirror or on an interface between two media of differing indices of refraction.  In the latter case we
have both reflection and refraction and we will be discussing this in more detail later.  We will see,
for example, that the amount of reflection depends on the polarization of the light.  We will also
discuss techniques for eliminating reflection - but more on that later.

Let us look at the reflection of light from a spherical mirror as we show in Figure 5.  The center of
the spherical mirror is at the point O and the radius is R.  The dashed line through O and O’ is the
axis of the mirror.  A ray of light starts from point P and reflects off the mirror at point M.  The
angles of incidence and reflection are equal and the reflected ray intersects the axis at point O’.  Note
that ϕ = 2θ  and as long as the angles are small, the distance between O and O’ is R/2.  If we have a
collection of parallel rays at varying distances from the axis of the mirror, as long at the angles are
small, all the rays would be focused at the same point O’ and the focus is a distance R/2 from the
mirror.  Light from a very distant source would strike the mirror as a collection of parallel rays and
focus at point O’.  Alternatively, a source of light at O’ would reflect off the mirror to produce a
parallel beam.  This we obtain from the law of reflection.  However this only works for rays which
are close to the axis of the mirror so the angles involved are all small.

Let’s now consider Figure 6 where we plot a parabola with focus at x = 1 and y = 0 and a directrix
(line) defined by x = -1.  Recall that a parabola is the locus of all points equidistant from a point
(focus) and a line (directrix).  The axis of the parabola passes through the focus and is perpendicular
to the directrix.  The equation for our particular parabola is:

O O’
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θ

θ
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Figure 5 - Light ray traveling
parallel to the axis of a spherical
mirror reflects off the mirror and
passes through the focus of the
mirror located a distance R/2 from
the mirror where R is the radius of
the mirror.
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We also draw a circle of radius R where R = 2 and the center of the circle lies on the axis of the
parabola at x = 2 and y = 0.  The equation of the circle is given by:

y2 = 4x − x2

If the focus of the parabola is at f , 0( )  with vertex at the origin and the center of the circle at R,0( )
then we have for the parabola:

y2 = 4fx

and for the circle:

y2 = 2Rx − x2

Notice that in the region near the axis of the parabola, the two curves approximate one another.  That

is not surprising since the difference in y values is x2 .

Figure 6 - A circle and parabola are plotted.  The center of the circle is on
the x-axis at x = R = 2 and the focus of the parabola is also on the x-axis at
x = R/2.  The radius of the circle is R and the directrix is at x = -R/2.



P360 - Spring, 2000Note # 1

7

Now consider the vertical line drawn by x = 1.5, for example.  This line is parallel to the directrix
and let’s call the distance between the two lines c.  The distance between the directrix and the pa-
rabola is equal to the distance from the parabola and the focus and we call that a.  Notice then the
any path from our line at x = 1.5 to the parabola (parallel to the axis of the parabola) and then to the
focus has a total path length of c (see the dashed line).  Suppose parallel rays of light, say from a
distant source, all arrive at the line at x = 1.5.  These rays are also perpendicular to the line.  All the
rays are focused at the focus of the parabola because they all take the same time to travel.  There is
no minimum path since all the path lengths we are considering have the same length.  This is the
condition for a focus.  It is exactly true for a parabolic mirror and only approximately true for a
spherical mirror as long as stay close to the axis of the mirror so the angles are small.  Obviously it
does not matter where the line is located - it just has to be parallel to the directrix.

An ellipse is the locus of points such that the total distance between one focus of the ellipse to a
point on the ellipse and then to the other focus is a constant.  So if we fashioned a mirror in the shape
of an ellipsoid with the reflective part on the inside and had light rays emerging from one focus they
would all converge at the other focus.

Liquid Mirror Telescopes

Spherical mirrors are easier to make then parabolic mirrors but they have the problem of imperfect
focusing as pointed out above.  Mirrors used in telescopes are spherical.  One way to make a para-
bolic mirror is to spin a heavy liquid, like mercury.  A rotating fluid takes the shape of a paraboloid.
The focal length, f,  of such a mirror is related to the acceleration of gravity, g, and the angular
velocity, ω , with which the liquid is spinning:

f =
g

2ω2

Telescopes using such mirrors have been built and are being built.  Obviously the mirror can only
point up and there are safety considerations.  The Large Zenith Telescope will be built near
Vancouver, CA.  It will have 28 liters of mercury spinning in a large pan at one revolution per 8.5
sec.  See the websites:

http://www.astro.ubc.ca/LMT/lzt.html

and
http://wood.phy.ulaval.ca/lmt/home.html

1   Feynman, Leighton and Sands, Lectures on Physics, Vol I, Addison-Wesley, Reading MA (1963) Chapters 26 and 27.
2   Feynman, R. P., QED:  The Strange Theory of Light and Matter, Princeton Press, Princeton, NJ (1985).


