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Introduction

In this note we discuss electrical oscillating circuits: undamped, damped and driven.

LC oscillator - undamped

FIgure 1(a) shows a capacitor C and an inductor L in series with a switch S. The impedance across
the series combination of the C and L is given by:

Ẑeq = i

(

ωL − 1

ωC

)

(1)

If ω = 1/
√

LC this impedance is zero – a current can flow without an external voltage source -
assuming that the capacitor is initially charged. In fact if the capacitor is charged with charge Q
and the switch is closed the capacitor discharges through the inductor and the changing current
through the inductor leads to a voltage across the inductor that changes with time and is always
equal to the voltage across the capacitor. Kirchoff’s voltage law leads to:

L
dI

dt
+

Q

C
= 0 (2)

Using I = dQ/dt and re-arrangement yields:

d2Q

dt2
= − 1

LC
Q (3)

This means that the charge on the capacitor oscillates: Q(t) = Q0 cos ωt where ω = 1/
√

LC. But
since V = Q/C the voltage across the capacitor oscillates as does the current in the inductor.
This is reminiscent of the equation for the displacement x of the mass m from equilibrium in a
spring-mass system where the spring constant is k:

d2x

dt2
= − k

m
x (4)
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Figure 1: (a) If the capacitor is initially uncharged and the switch is closed, the circuit will oscillate
with frequency ω = 1/

√
LC; (b) If a resistor is added to the circuit oscillation still occurs but with

a current amplitude that decays exponentially with time; (c) A driven RLC circuit.

The circuit of Figure 1(a) is the electrical analog of the spring-mass system where L replaces m
and 1/C replaces k. When the charge on the capacitor is a maximum the current through the
inductor is zero and vice-versa – this because the current and charge are out of phase by 90o. For
a mechanical oscillator, when the displacement is a maximum the velocity is zero and vice-versa.

In a mechanical oscillator the total mechanical energy is the sum of the kinetic energy, mv2/2 plus
potential kx2/2. For the electrical oscillator the total electrical energy is the sum of the energy
stored in inductor LI2/2 plus the energy in the capacitor Q2/2C. In both cases, when one type of
energy is a maximum the other is zero.

RLC oscillator - damped

Figure 1(b) shows the same circuit with as in Figure 1(a) but now with a resistor in the circuit.
If the capacitor is initially charged and the switch is closed at t = 0 oscillation still occurs but
eventually the oscillations die down – the initially stored energy is eventually all dissipated as heat
in the resistor. Applying Kirchoff’s voltage law to the circuit of Figure 1(b) implies the following
modification of equation 2:

L
dI

dt
+ RI +

Q

C
= 0 (5)

Using I = dQ/dt and re-arrangement yields:

L
d2Q

dt2
+ R

dQ

dt
+

Q

C
= 0 (6)

This looks similar to the equation of motion for a mechanical oscillator where the damping force is
proportional to velocity with damping factor b:
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m
d2x

dt2
+ b

dx

dt
+ kx = 0 (7)

We will solve equation 7 by assuming that the solution must take into account both the damping
and an oscillation. Why? We already saw from the above discussion what without a resistor we
expect an oscillation. We saw from our discussion of RC and LR circuits that we expect exponential
damping. If we just have oscillation without a resistance we expect Q = Q0e

iωt. To include damping
we simply make the replacement ω → ω + iα where α is some real number. Then the solution looks
like Q = Q0e

i(ω+iα)t = Q0e
−αteiωt. Thus we have oscillation with an amplitude that decays away

exponentially with time.

To substitute our trial solution into equation 7 we need to calculate the first and second derivatives.
For the first derivative:

dQ

dt
= i(ω + iα)Q (8)

and for the second derivative:

d2Q

dt2
= −(ω + iα)2Q (9)

Substitution into equation 5 yields:

−L(ω + iα)2Q + iR(ω + iα)Q +
Q

C
= 0 (10)

where it should be clear that in the above Q = Q0e
i(ω+iα)t. But the point is that we cancel Q

in the above and we are left with an algebraic equation – our differential equation has become an
algebraic equation.

−(ω + iα)2 + i
R

L
(ω + iα) +

1

LC
= 0 (11)

Actually equation 11 is really two equations because it involve complex numbers. We will leave it
as an exercise for you to show that the solution that this yields has:

α =
R

2L
(12)

and
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Figure 2: Plot of the dependence of voltage across the capacitor as a function of time for the
damped RLC circuit of Figure 1(b) assuming the capacitor is fully charged at t = 0. The black
curve corresponds to equation 14 and the gray curve shows the exponential decay of the amplitude.

ω =

√

1

LC
− R2

4L2
=

√

ω2
0 − R2

4L2
(13)

If we assume that the capacitor is fully charged at t = 0, and recalling that V = Q/C, the voltage
across the capacitor is:

VC(t) =
Q0

C
e−Rt/2L cos ωt (14)

In Figure 2 the solution of equation 14 is plotted as a function of time. You can convince yourself, by
studying equations 12, 13 and 14 or by experimenting with a plotting program (like Mathematica)
that when several oscillations of the solution are observed before the solution dies away, then the
damped frequency ω is close to the natural frequency ω0 – or ω2

0 >> R2/4L2.

From equation 13 we can also see that if ω2
0 < R2/4L2 there will be no oscillations.

RLC oscillator - driven

Figure 1(c) shows the circuit of Figure 1(b) with the switch replace by an a.c. voltage source. We
assume that the frequency of this driving voltage is ωd and its amplitude is Vd so equation 7 is
modified by the inclusion of this driving voltage on the right-hand-side:

L
d2Q

dt2
+ R

dQ

dt
+

Q

C
= Vde

iωdt (15)

What is the solution to the above? We know that the solution is the sum of two solution, the
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so-called homogeneous solution which is the solution with the right-hand-side set equal to zero
– this is just the solution we found for equation 7 – and the so-called particular solution with
the right-hand-side non-zero. We know that if we wait long enough the homogeneous solution will
decay away so all that is left is the particular solution. We would expect that the particular solution
should have the same frequency as the driving frequency. So let’s assume a solution of the form
Q = Qde

iωdt.

Substituting into equation 15 and after a little re-arranging:

(

−ω2
d + 2iαωd + ω2

0

)

Qde
iωdt =

Vd

L
eiωdt (16)

where α = R/2L and ω0 = 1/LC. We can cancel the eiωdt and divide by C so that the left-side
is the voltage across the capacitor. The voltage across the capacitor will oscillate with frequency
ωd and will have an amplitude that is a function of this driving frequency: VC(t) = VC0(ωd)e

iωdt.
From equation 16:

VC0(ωd) =
ω2

0Vd
(

−ω2
d + 2iαωd + ω2

0

) (17)

Using the usual re-write for our complex quantity in the denominator we have:

VC0(ωd) =
ω2

0Vde
iφ

√

(ω2
d − ω2

0)
2 + 4α2ω2

d

(18)

where:

φ = tan−1 2αωd

ω2
0 − ω2

d

(19)

So the amplitude of the voltage across the capacitor is a maximum when the driving frequency
is equal to the resonant frequency. And there is a phase angle φ between the voltage across the
capacitor and the driving voltage. That angle is π/2 at the resonant frequency.

Figure 3 shows a plot of the voltage amplitude (given by equation 18) with ω0 = 300 s−1 of the
driven oscillator as a function of driving frequency for three different values of α of 10 s−1, 30 s−1

and 50 s−1. Also shown is the phase angle.
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Figure 3: Plot of the voltage amplitude (given by equation 18) with ω0 = 300 s−1 of the driven
oscillator as a function of driving frequency for three different values of α of 10 s−1, 30 s−1 and
50 s−1. Also shown is the phase angle.
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